UPDATE 01' SINGLE EVENT FAILURE IN POWER MOSFETS

Donald K. Nichols, James R. Coss, Tetsuo Miyahii Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 9 I I 09

> Jeffrey Titus Naval Surface Warfare Center Crane, IN 47522

Dennis Oberg, Jerry Wert, Peter Majewski The Boeing Company Scattle, WA 98124

John Lintz Honey well, Space Systems Group Clearwater, Florida 34624-7290

Abst_ract

(4) present trends that permit extrapolation from the existing data set.

This paper presents an update of the first 1994 compendium of single event test data for power MOSITES. It provides fai I methresholds fromburnout or gate rupture for 01

devices of six manufacturers.

1. Introduction

Power transistor single event effects (SEE) lest data obtained by Jet Propulsion Laboratory, The Boeing Company, Honeywell Space Systems Group (Clearwater, FL), The Aerospace Corporation, the group at the University of Arizona, NWSC (Crane, IN) and others have been included in this paper. Thus, this paper is a supplement to an original compendium presented in 1994 (Ref. 1.) The intent is to present a comprehensive set of MOSFET data from May, 1994, to May, 1996. It is believed, however, that additional datamaybe available that has not been published or brought to our attention. Contributors who desire inclusion in this and any future compendia should contact Don Nichols.

This data set includes failure threshold voltages (VDS = drain-source voltage) for both single event burnout (SBB) and single c.vent gate rupture or damage (SBGR or SEGD) of MOSFET power devices. There is no hard line of separation between power devices and lower power devices, nor is there a demonstrated immunity of the latter to SBE. There is some data (not shows) for SBB of npn bipolar devices but none for pnp bipolar devices. The bipolar data is still very limited and not included in this compendium.

The purpose of the present work is to supplement the data of Ref. I in order to:

- (1) provide design engineers with operating voltage limits (max VDS for a specified VGS) of tested devices.
- (2) identify unspecified process variables relevant to Sill Eresponse
- (3) identify those parameters characterizing SEE response

II. Testing Approaches

Several possible testing approaches have been considered, but two are of fundamental importance. One approach attempts to measure the SEB/SEGR cross section vs VDS of a device for a given testion (or equivalently a given LET) for a fixed gate source voltage (VGS) and temperature. This type of cross section should not be confused with the LET-dependent cross sections tabulated for soft errors in ICs. The transistor cress section equals zero at lower VDS and rises very rapidly only all its threshold VDS (almost like a step function); then tends to level off at somewhat higher VDS. So far, few experiment have extended the data far beyond threshold, but such data is mentioned when known.

To obtain SEE rates for a specified environment and operating condition (defined by temperature and V_{GS}), one must perform the same experiment for several other ions to establish the voltage threshold and cross sections above each of the voltage failure thresholds. 'Ibis approach requires a large sample size and still does not provide an adequate basis for calculating the device upset rate. All of the preceding cross sections must also be repeated for angles of beam incidence greater than zero, unless a plausible angle dependence has been provided.

The second approach seeks simply to identify the threshold voltage VDS(th) for failure for a given ion (usually Ni/Fe or Br/Kr), a fixed VGS and temperature. The selected ion should represent a realistic worst case for the environment. Ni or Fe ions at normal angle of incidence is a realistic worst case, because there is no increased susceptibility from grazing angle ion strikes as there is for integrated circuits. The latter approachindicates a voltage operating limit to the designer who can apply a derating factor to his operation, but it also offers little chance to estimate the failure probability if one chooses to operate above threshold,

The data tabulated here in one. extended table

'presents threshold VDS for several groups of' ions al a few se lected gate source voltages VGS, following the second (recommended) approach. Some theoretical determinations indicate the effect of varying VGS (related to oxide field) for a fixed drain-source voltage. A nearly standard technique for measuring the threshold VDS onsists of the following steps:

- (I) Prior to any irradiation, measure the drain source current at rated BV for VGS=0, or alternatively measure the actual breakdown V] S for the same conditions. One should also measure the gale-source current al maximum rated gate voltage (usually 20 v) for VDS=0. These measurements establish the normal operating currents.
- (2) Choose a single gate voltage VGS (start with the least susceptible zero voltage) and hold it constant for each subsequent irradiation step, for successively larger VDS. At the end of each irradiation step 01, say, 105 ions/cm², change the bias conditions back to those used in step (1) to again determine the Iwo currents IGSS and IDSS.
- (3) Failure may occur as either (1) SEGR as evidenced by a large permanent increase in gate current ranging between a fraction of a milliampup to the circuit-imposed limit (say, 10 amps) or (2) SEB (burnout) evidenced by a short across source and drain as well as a gate short.
- (4) Delayed Failures—On occasions JPL and other lest organizations have seen delayed types of SEGR. On some occasions, the gate currents increased to—I mA during, irradiation and then increased again to the circuit limit daring, posl-beam tests where, as always, VGS was reset to 20V. Another type of SEGR failure occurs when the drain-source voltage is incremented for the next test. Some experimenters have modified the abrupt change to max gate-source voltages between irradiations, by ratcheting VGS upward in steps.

III. Supporting Studies

Several collateral tests have been performed by now. Nichols et al (2), Fischer (3), Tastet (4), Mouret (5) and Titus (6) have demonstrated that higher grazing angles of ion incidence have less effect on SBB and SEGR than normally incident irradiation. Hence the complications involved in calculating SEE rates by dealing with an effective LET vs incident ion angle are simplified. (In actuality, there is no known formal method for calculating rates under these conditions for a specified environment except to take a very simplified worst case in which all strike angles are assumed to affect the device equally.] High temperature tests have been performed (2,7, 8) showing that SEB is greatly reduced at higher temperatures due, to phonon interference with the avalanche burnout mechanism, in contrast, high temperatures tend to promote SEGR in a few cases, but not in others (6).

It is noted that most transistors that differ only by die size (e.g. by having a different number of the same size transistor elements or cells) have similar breakdown voltages as expected. However, the I'c are a few occasions when such devices yield widely different STE results. It is postulated that the dielectric oxide breakdown voltage (an uncontrolled parameter) may be responsible for wafer-to-wafer and device-to-device variability to SEE.

IV. Organization and Scope of Data

This paper presents SEB and SEGR data for MOSFETS in '1'able 1 for all known new data taken up to May, 1996-- as marked with an asterisk in column 1. Data are also included from cattier tests for those parts that are closely related to parts for which new data are tabulated, so as to put the new data in context. Closely related device data are those lying on a contiguous row in the table's data entries. It is noted that many tests are repeated in the data sets-- useful for showing cons is tency in most cases, but possibly cost ineffective. Some data are taken at an elevated temperature, which consistently shows a higher threshold voltage when SEB is the failure mode. Data sets by 11SS are particularly useful in comparing the two temperatures with a switched gate bias, Dynamic testing, has a dramatic effect in forestalling burnout failures, by interrupting the rather slow failure modes.

Six manufacturers are represented in this second set, which broadens the manufacturer base beyond that reported in Ref. 1-- primarily for International Rectifier (INR) and Harris (HAR), Most data are for commercial parts, but there are some new "rad-hard" technologies.

The data are grouped in rows by device manufacturer. Within each manufacturing group, devices with the lowest breakdown voltage are listed first-- first n-channel and then p-channel. Devices that are very similar, or the same devices tested with different conditions (e.g. VGS) are grouped in touching, adjacent rows. The columns list manufacturers, device number(s), channel type, and test sample size. 11 is observed that samples are seldom large enoughto provide rigorous statistics, nor acharacterization of maverick behavior that is occasionally noted. Most data, however, are fairly repeatable. Subsequent columns list the rated breakdown voltage (BV) and gate-source voltage VGS-

The next five columns gro up the data according to test ions. Single voltage entries in the ion columns show a failure voltage; a slashed pair show a pass/fail voltage threshold. The first column is for low-LET ions having LETs less than that of the dominant Ni/Fe/Co/Cugroup included in column two. This first group is useful in judging the adequacy of postulated theories (See for example, ref. 3). It is now often accepted that a characterization with a single ion of the second group may be all that is needed for project requirements. This view is supported by two acts: (1) those heavier tons having a higher LET have fluxes in outer space two or three orders of magnitude smaller than that of the Ni/Fe group, and (2) there is no need to account for enhanced effects from grazing-angle collisions having a high "effective" (angledependent) LET. The third group in the table includes Br and Kr (LET=37 MeV/mg/cm 2), traditional high LET ions at the Brookhaven Van De Graaff (BNL) and U.C. Berkeley 88inch cyclotron (88), respectively. The fourth group includes the highestLET ions easily available at the aforementioned facilities. The fifth column includes data from very high energy (10-100 MeV/amu) facilities: the Berkeley Bevalac (now defunct) and GANII. (France). It is this last group of ions that present some inconsistencies with the lower energy] ET characterizations, for reasons that have not yet been fully explained. Some of this column set are empty for this update;

The remaining set of columns provide the failure mode, the test group, test date, jon facility and "Remarks." It is useful to know that INR uses 7000 and 8000 numbers to specify n-channel devices with 1 00 Krad and I Mrad total dose tolerance, respectively; both INR and Harris use 9000 numbers for p-channel devices. The second INR mfr number (orthe first for three-digit part designations) relates to the breakdown voltage. The next number is related to the die size-- the larger this number, the larger the die size and (usually) the larger the number of individual cells. INR's let ter "11" in the third place from the left of the letter prefix means that the devices are especially designed to be radiation resistant to total dose. It turns out that such devices are also very resistant to single event effects as well. The fourth letter of INR (which may be "H") and the third letter of HAR devices is a package designation not expected to affect SEB/SEGR data. Harris denote s rad hard tolerance with a suffix after the device number; R= 1 00 Krad and H=1 Mrad. FSE is a recent Harris designation for their SEE hard technolog -- a claim defined by the data given in Table 1.

VI. Conclusion

This updated compendium of SEE effects (SEB and SEGR) in power MOSFETs can be combined with the. data presented in Ref. 1 to provide a useful data base for designers of satellite and space systems. Some extrapolations may be warranted, and some cautionary observations are also provided. Testing with only one ion is often acceptable for system requirements; the reduced effect of incident ions at oblique angles presents an important simplification for parts selection—if parts are available that meet—the measured threshold voltage failure levels for the highest-LET population of any consequence in space—the Ni /Fe group.

Acknowledgments

J]'], wishes to thank Charles Barnes, radiation effects supervisor, Harvey Schwartz and Mike O'Connor for test support and preparation. The research described in this publicationwas carried out in part by the Jet 1'repulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space. Administration. Reference herein to any specific commercial product, process or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply the endorsement by the United States government or the Jet Propulsion Laboratory, California 1 nstitute of Technology.

Thanks are also due to staff at the Brookhaven National Laboratory Van de Graaff, the University of Washington Van de Graaff, and the La wrence Berkeley Laboratory 88-inch cyclotron.

Special thanks go to all of you who are lobbying for the much wider publication of these single event compendia in the IEEE Transactions of Nuclear Science.

References

- (1) D. K. Nichols, K. 1'. McCarty, J.R. Coss, A. Waskiewicz, J. Groninger, D. Oberg, J. Wert, P. Majewski, R. Koga, "Observations of Single Event Failure in Power MOSFETs", IEEE Radiation Effects Data workshop," p 41, (Dec, 1994)
- (2) D. K. Nichols, James R. Coss, Kenneth l'. McCarty, "Single Event Gate Rupture in Commercial Power MOSFETs," *RADECS93* (accepted for publication).
- (3) '1', Fischer, "Heavy-Ion-Induced Gale-I<uptLIIc in Power MOSI-ETS," IEEE Trans. on Nuclear Science, NS-34, No. 6, 1786 (Ike., 1987).
- (4) P. Tastet & J. Garnier, "Heavy Ion Sensitivity of Power Mosfets," *RADECS91*, p.138 (1991)
- (5) I. Mouret, M. Allenspach, R. D. Schrimpf, J. R. Brews, K. F. Galloway & P. Calve], "Temperature and Angular Dependence of Substrate Response in SEGR," IEEE Trans. on Nuc. Sci., NS-41, No. 6, 2216 (Dec., 1994)
- (6) J. L. 1 itus, C. F. Wheatley, D. I. Burton, I. Mouret, M. Allenspach, J. Brews, R. Schrimpf, K. Galloway & R. L. I'case, "Impact of Oxide Thickness on SEGR Failure in Vertical I'owe] MOSFETs; Development of a Semi-Empirical Expression," ibid, NS-42, No. 6, 1928 (Dec., 1995)
- (7) A.E. Waskiewicz & J. W. Groninger, "Burnout Thresholds and Cross Sections of Power MOS Transistors with Heavy lons "Rockwell International kept No. D NA-MIPR-88-507 (Feb., 1990).
- (8) G. H. Johnson, R. D. Schrimpf, K. F. Galloway, R. Koga, "Temperature Dependence of Single-I; vont Burnout in N-Channel Power MOSFETTS," *IEEE Trans. on Nuclear Science*, NS-39, No. 6, 1605 (Dec., 1992).
- (9) J. H. Hohl & G. H. Johnson, "I features of the Triggering Mechanism for SEB of PowerMOSFETs," *IEEE Trans. on Nuclear Science*, NS-36, No. 6, 2260 (Dec., 1989)
- (10) J. H. Hohl & K. F. Galloway, "Analytical Modelfor SEB of PowerMOSFETS," *IEEE Trans. on Nuclear Science*, NS-34. No. 6, 1275, (Dec., 1987)
- (11) T.F. Wrobel & D.E. Beutler, "Solutions to Heavy Ion Induced Avalanche Burnout in Power Devices," *IEEE Trans. on Nuclear Science*, NS-39, No. 6,1636 (Dec.,1992)
- (12) S. Kuboyama, S. Matsuda, M. Nakajima, '1'. Kanno, T. Ishii, "Numerical Analysis of SEB of Power MOSFETs," *IEEE Trans. on Nuclear Science*, NS-40, No. 6, 1872 (Dec., 1993)
- (13) J.Brews, M. Allenspach, R. Schrimpf, K. Galloway, J. Titus, C. Frank Wheatley, "A Conceptual Model of SEGR in Power MOSFETS," *IEEE Trans. on Nuclear Science*, NS-40, No. 6,1959 (Dec., 1993)

fable 1.	The Failure for Pass/	Fail': Vds Voltages for V f	OSFETs for Indicated fon Beams

.....

					Table 1. The Fa	Pass/Fail)	Vds Voltages fo	VOSEETS '0	r Indicated Ion Bear	ns				
NOTE: The	· appagring in Co	Jump 1 indicator		uinad data Cont	figuous row entries a	en reported data o	haven hara ta ni	or now data in	contact This table			4 - 11		ad in 1007
V"r	Wfr Number			nole BVds Vgs/of		Fe.Ni.Co. LET=2			High Energy 'on			g_Date		ec in 1994, n Remarks
'VOT	105440			3 500 30V			240(196 V e	V_9+)		ææ	JUA	994	PN.	Mouret, 'EEE94. Room T. Angle data exist
.pni_	50G2292	n		*00 0					60 (LET=44)	SEGP/SEB	Ţ	***/95		Nicho's, 1961 VeV Xe
*'xvs	'XEV40V25¤H	n	6	250 0	200(Ne),140(Ar)	·	55(Kr)			æ	J	*3 & 6/90	88	Nicho's, ⊟igher threshold at 100 deg. C.
*'xys	'XT V 35N30		4.	300 0	225(Ne),150(Ar)	·	67(K r)			3E	J	*6/90	88	Nichols, Pigher threshold at 100 deg. C.
*'xys ''xys	'XTV21N45 'XCV21N45DH	n 	5 3	450 0 450 0	315(Ne),214(Ar) 300(Ne),270(Ar)		144(Kr) 140(Kr)	· · · · · · · · · · · · · · · · · · · ·		æ3 æ3	J	*3 & 6/90 *3 & 6/90	88	Nicho's, Higher threshold at 100 deg. C. Nicho's, Higher threshold at 100 deg. C.
*S"L	VN98AF			1 80 0V 1 80 10V					60/70 (LET=44) 60/65 (LET=44)	SE3	- J	*11/95	TAV	Nichols, 1961 VeV Xe Nichols, 1961 VeV Xe
SIL	1BEE130	2N6796 n		2 100 10V	100(N),100(Ne),7					SE3	P/A	*1990	88.	Compare to 'NR device (1994 compendium)
*8"_	1DCE130	2N6796 n		100 5V		50(Co)				SE3	3	*7/95	88*	Oberg. Ambient & 100 deg. C.
'S'L	9230_family 420_family	2N6951 b		200 5 500 5		Hard(Co)				_N/A - 5⊞8	9	7/95*	99 99	Oberg100 deg C. ('ooking for SEGR') Obera. Ambient & 100 deg. C.
·s"_	430 family	2N6802 n	• 0 1	'o1' 500 5		317 (Co)				- SE	 B	*7/95	88	Oberg, Ambient & ~100 deg C.
Sr_	430 family (continued)	2N6802 n		500 5 . 12		300				SEB/SEGP	.8	*4/93 *10/93	8.8 UW	Ambient=45 deg. C. Temo=100 deg. C.
*S"_ *S"_	VP0610 -low r VP0610 -low r		· · · · · · · · · · · · · · · · · · ·	7 60 25V 7 60 25V	-	Pard(Ni) Pard(Nii)			٠	N/A N/A	-88 -88	*4/95 *4/95	BNL BNL	Lintz-Room T. Lintz-120 deg. C.
-וועם	1 94₩ 7054	n		4 60 12V			55(Br)	<35(!)		353p	C	*4/95	BNL	Titus, Rept #SEGR-003-25 deg. C. only
Vb.	continued IBH V 7054	n		20V 60 0V		Hard(Ni)	46(Br)			SEGR N/A	C	*4/95 *7/93	BN'L BNL	Thus, Rept #SEGR-003, 25 deg. C. only DC9242, Bob Ferndon, 7/13/93
	continued	11.000		5V		Hard(Ni)				N/A		*7/93	BN'.	DC9242 Bob Ferndon 7/*3/93
N₽	'RE140	2N7218 n		100 0 8 5		95/90(Ni) Hard(Ni)	70/80(Br)			983 983	BNL ESA	*6/93	BNL BNL	9319, Lintz, Same response at Room T & 90 deg. C. 9203E, Harwell Pept AEA-PS-1349
No INO	IDE150	2N6764 n 2N6764 n		100 0, 1 &	5	95/90(Ni) 90/100(Ni)	70/80(9-)			SE3 SE3	⊔SS SSA	*6/93	BNL BNL	9232, Lintz, Same response at Room ** & 90 deg. C. 9229G, Harwell Rept AEA-RS-1348
Nb Nb	IRE+50	2N6764 n 2N6764 n	3	100 0	100(Ne) 70(Ar)	50(Cu) 75	75		40/60(12 GeV !	a-Bev.)SEB	P/A &.! A	*990 *5/92	9.9	JPL: Bevalac ion LET=30, 6/98, Koga
N¤ N¤	1RF150 1RF150	2N6764 n 2N6764 n	3 ea	ach 100 off 100 0	100(209 MeV C') 100(209 MeV C')		65(Br)	55(1) 50(1 to 4 GeV Xe) GAN 90/100(>1 GeV		ONES J	11/90 6/98	BN'L	3 GAN'L ions, Tastet, PADECSet 11"Two Fe ions at Bevalac, each LET-6.
NR .	Continued			100 0 100 10		100(Fe) 100(Ou 100(O) 100(Kr) 0) 90/100(Kr)		50/100(12GeV La)[1	9 2 2	, 8 D	1990	88 86	"1"=JPL at Bevalac. June 1998 Waskiewicz & Groninger, DNA Rept. 2/90
מאיי	PHE7110			4 100 12V 20V			95(Br) 63(Br)	29(1)		923P 923P	C	*4/95 *4/95	BNL BNL	Titus, Pept #SEGR-003, 25 deg. C. only. Titus, Pept #SEGR-003, 25 deg. C. only.
Nº	IRME7110 continued			100 2V		Pard(Ni) Pard(Ni)	Hard(Br) 70(Br)	4,5 (,)		N/A SEGR	0	*7/92 *7/92	BNL BNL	90 deg. C. 90 deg. C.
מעוד	19°250	2 <u>%</u> 6766 n		200 0,1 85		135/140(Ni)				SE3	HSS	*6/93	BNL	9239, Lintz. Same response at Room ▼ & 90 deg C.
Va Va	IRF250 IRF250	2N6766 n 2N6766 n		200 0 200 0		120/140(Ni) 1150	<120(Br)		00/7	883 883	ESA A	*1/94	8 N'_	9229G, Harwell Rept AEA-RS-1349 Koga
	PF250 continued continued	2N6766 n	2 3 ea	_200_0? 10 echoff	200(Ne),120(Ar) 200(On	140(Fe),120(Cu 90(Cu),100(Ni) 135(Ni))_100(Kr) 85(Br) 112(Br)	107(1)	90(Two La ions	953 953 953	A&B R/A CNES	1999 1990/1992	99/Bev 98/BNL 9NL	Oberg & Ko'asinski, Bev=Beva'ac'now defunct.' Waskiewicz 2 GAN'L ions Tastet, PADEOS01
NR NR	'RF250	2N7225 n		200 off 200 5	.200(0 !	135(31)	155 (212 V e		OUNERGANIL	. SEB . SEB	OVES B	*9/93 11/93	9.8	2 GAN'L ions l'astet, PADECS93, p 452. Temp= 25 deg. C.
NP	continued IPE V 250	2N7225 n	2	5 200 5		160	130(Kr)				B NASDA	11/93	9.8 JAER!?	Temp= 100 deg. C. Shinosaki, 90 deg. C. LDC9120, NEED POON TEVP
								_			_			

Syawas vo.eco.	\$6 ₍₁₎	Koga. No SEB with Kr at VAR-200	93.0, "intz. Poom T 93.0, Lwtz. 90.deg.C 9299, Harwer Rept AEA.PS-1949	DOBALT, Boom - Linz DOBALT, Boom - Linz DOBALT, 2015, deg. C. Linz DOBALT, 25 K4z, 0104 days, druy off. 22280, Hanse' netr AEA PS-1348 90 deg. C.	DC8977 Room T. Linz DC8977 Soc. Linz DC8987 200 K42, 50171 Sov. duy occle. Linz DC8987 200 K42, 50171 Sov. duy occle. Linz DC8982 Lanwer beg AEA-RS-1348 2 DC89284 2017 9110, Dr. Bab.Sahib DC89284 45 8 100 deg. C.	P.V. DOBSOT BOOM 1. Im P.V. DOSSOT SOD 649 C. Lintz P.V. DOSSOT 200 KU2, 0/10/Latow duty 'ou' Lintz GANT 200 VI et a 92125E Workshoo SSIN Divers VI P. 100 649, C. 990 Oberg Poom 7. 8, 100 649, C. 991 Oberg Poom 7. 8, 100 649, C. 991 S2295, Warwel Peer AEA-BS-1348	DC92/8G Linz 'rewised entry 'or 1994' 9288, Linz - 2.8, 12V, 'rewised'or 1994' DC9143, 81-99 deg. C; NI @ room T	Oberg 100 deg C, ROOW TEVP DATA = worst case. D09517, Linz, 125 KHz, 0 to 10V, 04=3.24s	92290, Harwei Red AEA.DS.1349 Linz, As osunvived 450V V/ds peak at 37KHz. Au has inachouse angle = 27 mc. Vervison Oberg ambient & High T (-100 deg C) Oberg ambient = 45 deg C. Oberg Temper = 45 deg C.	2229G, Hawell Boot AEA.BS. 248 Oberg amblent 45 deg G Oberg amblent 46 deg G Oberg Amblent 8700 deg G Weyret IEEEge Boom Temp. Angle da'a exet.	BW. 922965. Larwell Beyl AEA, 95.*349 BW. 9-6 90 deg C. W @ noom T. Byl. 9-6 90 deg C. W @ noom T. Byl. 9-7 90 90 90 90 90 90 90 90 90 90 90 90 90
	NE 56/6.	c,	11/93 BNL 11/93 BNL 11/94 BNL	74/95 BNL 74/95 BNL 77/92 BNL 77/92 BNL 77/92 BNL 77/92 BNL 77/92 BNL	20,47 1,95	7/95 BNL 7/95 BNL 7/95 BNL 7/992 GAN 7/93 98in 7/94 89in	2/93 BNL 9 8 2/92 BNL	NS 56/8.	26,0 26,0	74.94 BNL 5/93 98 5/93 89 5/93 89 5/93 89	2 (2.7 g N. 2) (2.
Test Org Date	0.0	4	888	8 8 8 2 a a a a	\$ \$ \$ \$ m	& & & & & & & & & & & & & & & & & & &	8 0	m Ø	3 , 3 , 3 , 6 6 6	8 m m m 5	M α α δ × δ
angles Sh	88	8	B) B) B)					8 8	9999		
Suo, Ki. 157 = 'Bio' Z dous High Engly Suo	125(81) 75(81) 25(AU)	() () () ()	250/260/87/	2 00/240/34/ 235(97) 235(97)	240/280(5)	130(_ET=32)	225/25Q(Br)		320,911 <3.0(Cu) 5.00(Au) 275(LE**100)	2 59/300/B+).	300 (94) 275/200(30) 275/200(30) 250/257=231 350/457 355/(94) 325(1) 250/Xe)-GAVIL
58,N.Oo. 157=27 Br or Kr	:	:	250/270(N°) 270/290/N°) 250/270(N°)	245/256(N)) 280/285(N)) 240/250(N)) 220/250(N)) 220/(ET=29)	255/250(N)) 295/290(N)) Hard(N)) 250/250(N)) 245	290/285(V) 350/350(V) 7260 240 (Pass) Co 260/290(V)	250/300(N) 220/230(N) 220/250(N)	300 at high T 340/390(Ni)	305/3+0(N) 305/3+0(N) 300 325	300/350(N) 300 325 300 (Co)	290/300(N) 290/300(N) 290/300(N)
Genero Vo Charnel Samele BVds Vgs (0"1 Low Z vons	n 79 200 2V	5 6 500	2V5786 n 400 0 8 5 2V5786 n 400 0 8 5 2V5796 n 400 0	2V5750 n 5 400 0 2V5750 n 4 400 0 2V5500 n 3 400 5WPPed 2V5500 n 400 2V 2V5500 n 400 5V 2V5500 n 400 5V		2V6769 n 2 400 0V 2V6769 n 2 400 0V 2V6769 n 5 400 0V 2V6769 n 400 5V 2V6769 n 400 5V 2V6769 n 400 5V	7 4 400 12 2 58Wiched 584 400 0 58* 5	2N6794 n 5505 5	2N6802 n 500 0 2 800 0	500 5 500 5 500 5 500 5 500 5 500 5 500 5 500 5	2N5770 n 5 k 500 0 290/350/ 2N5770 n 5 k 500 0 290/300/ 2N5770 n 4 500 5W/ched 360(Ne), 330/Ar) 300/Cu)
redmu√ **V	197250 confrued	052 676 ,	10 E 3 4 0	19 E 5330 19 E 5	0.6340 0.6340 0.6540 0.6540 0.6540	0.000 0.000	panujuoo Oseaa panujuoo	1a 420 1a5420	19 E 4 3 0 19	195440 195440 195440 195440	OSPHBI OSPBBI OS
ż	œ Z	a N	\$ \$ &			2 2 2 2 2	\$ \$ \$	g ?	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 3 3	g g g g g g

			Trus Dent	BV. P.90 deg. O. 50'=40.50 mic for high V nade		50 G	CW Oberg temperation deg C.			EV. 9252 Lintz. Same response at room 1 & 90 deg, C.			1		Av Nobols, Note change in failure mode vs Vgs.	1	2 599 co	BNL? Space Station Ereedom (SSE) Table	1	SNL tof 3 o'der version failed at Vds=200/Vgs=0.	BV_ Older version not tested at Vds=15	BYT 00 Chan C 100:0319	il	Bein Oberg	9.9 Vichols, Hard at 100 deg. C.		BNL Thus, IEEE95, see p. 1933, FSEE-SEE, Hard. AERIZ B. Schington, 60, 400, C. Inchest		O Nichols, Unither thresholds at the dear of	500138	Would inner	T moor slocked	Nichola Control	İ
	0 0 0	56/6	5076	0/21/6/4.	9 8 2 92	7/92	7/05	96/7.	207	7001.	20110	01/02		11/02		12/92	12/92	800	1	12/93	20/2	3/93	.860	3/62	3 & 5/90	.900	283/05	3/62	3 & 6/90	€6/2,	7001.	66/9 8 8.	2 2 6/00	5
10	es did se	0	ا دراغ ا	0 ∞ 0 0	α	ם מ	ļ n pr	∢	<u> </u>	3 5	, -,	-, o		-,;-	· c	n	α	QV.	Α	-,:-	•	α	ά,	m	-,		NASDA		->	ğ	\$	-,		; •
our lies	40.0	8	9) }	9,	\$		3 8	\$	88 c		45/50 1960 WeV Xe SEB	g G	833	8	·	8	4/X	£.	8	6	V	()	8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		(9	6 5	9		ļ.
עהיפתח להיט	10. P. S. A. A. A. A A A.		-									1		45/50 1950 V	-0 only.		1	: :										:	1 :		•	į		1 1
157 - Hote 7 100s		*50/Au)	Y	<.20(")		İ					į	İ			Vard " or Vas=0 on'y		1	1	(eX) 08./09.	!	! :		!		!	7007					1		: 1	
9, 0, (,		385/01	3.0 (0.0)	250/275/31	225/250(3r)			350(Kr)		50(196 VeV Br)	70/80(31)	20/40(Kr)			uard(⊡r)		i			1					245(Kr)	Hard/Br)	,00/Kr)	!	75/41	<250(Br)	245/196 VeV Br	250(Kr.	49414	
Fe, Ni, Co. 157=27				300/325/\	Z/5/300/V	300	11	369/Ar) 350/Cu)	40/45/Ni)			0,				(A)00+/08	90/100(%)			Lard @ 200/N		175/200(N)	239(Pass) 250 Hard (Co)				:	250 Hard (Co)	<u>S(Ar)</u>	>400(Ni)				
suo, Z wo		•	i		1		.	>>400//6					1							-			1	10000	Z50(Ne),Z50(Ar	1			2.0(Ne) .75(Ar)	1 ;	1	4.0(N) 380(Ne		
Seneric No Chamel Sample BVds Vgs'ou		: M	500 2	500.0 0 2		500 5	500 5	200	100 08 5	+00 25	0 00	100 5	C	0, 00,	100 <20	0 000	900		200	- 12 - 12 - 12		250 0	250 5		0 067	250 0	259 5	250 5	275 0	200 0	500 15	0.009	500 0	
Pannel Sampl	,			585			İ	-53-	E .	25.0	i		2	-		n •			4 '6	ام	-	5	į			į	2	į	9	4	60	2	မှ	
Seneric No			c .	276770 "			t	:	2N5782 n	1	E V/255 n	2V7283 n	2V5764 n	2N5764 n	c	62/12	2N7291 -		Ω . :				ء	٤		:	2N7295 n	-	رَفِرواهه n	e l	· c		E .	-
Wr Number	037450	Son'in Jac	'PU7450	continued	confinued	DUV7450	14508	200		19E-40	continued		195150		ESC-50B	- Delinited	CDK-50		FB 9250	Continued		EBW234	FS'.234	TA17663			CDC254P	5	ī,	FP-4305	Û77751	-A-7465	TA1756594	1
خَ	٥٨		2 :			2	1 0		aAu.	0 A J		\$			A CA	İ	a∀ī		!		و	1		аУн.			JAb Jab	1 :	i		aAb.	aAu.	uAh.	

٦.

Addencium. Lams Space Drodut News 30tt Duarier, 1994 reports collective data for ES series. A SEGS hard version of their ED series. Harns claims that all three transistor tracs (9V=100, 250, 500) unformly survive. SEGS with energetic carricles of LET=35 VeV/mg/cm2 at 90% of rated drain source breakdown and an of gate bas of 10 volts. Byt, lests of 193 & 4194.

Vanufacturers. HAD= Harrs, "Va=International Beciffer, lyys= Txys Corp., VOT=Veterola, pui__Ephilles, S'L=S'reorix.

Testers A-Aerossoce (P. Koga & W. Crain), B. Boeing (D. Oberg, J. L. Wer, W. Will), C. Cane VWSC (J. Trus), CVES-Centre National DEvides Sociates, ESA= Eurosean Space Agency (L. Adams), UAS-University, U. Bolino, L. Mondon, D. Bookwal, A. Waskiewoz), S. Sanda (T. Escher), VVA= Varino Sociates Colombia, University Foreign (P. Waskiewoz), S. Sanda (T. Escher), VVA= Varino Sociates Colombia, Valley Foreign PA).